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This paper is a continuation of our study on nonlinear processes in large-amplitude
geostrophic (LAG) dynamics. Here, we examine the so-called weak-β models. These
models arise when the intrinsic length scale is large enough so that the dynamics is
geostrophic to leading order but not so large that the β-effect enters into the dynamics
at leading order (but remains, nevertheless, dynamically non-negligible). In contrast
to our previous analysis of strong-β LAG models in Part 1, we show that the weak-β
models allow for vigorous linear baroclinic instability.

For two-layer weak-β LAG models in which the mean depths of both layers are
approximately equal, the linear instability problem can exhibit an ultraviolet catastro-
phe. We argue that it is not possible to establish conditions for the nonlinear stability
in the sense of Liapunov for a steady flow. We also show that the finite-amplitude
evolution of a marginally unstable flow possesses explosively unstable modes, i.e.
modes for which the amplitude becomes unbounded in finite time. Numerical simu-
lations suggest that the development of large-amplitude meanders, squirts and eddies
is correlated with the presence of these explosively unstable modes.

For two-layer weak-β LAG models in which one of the two layers is substantially
thinner than the other, the linear stability problem does not exhibit an ultraviolet
catastrophe and it is possible to establish conditions for the nonlinear stability in
the sense of Liapunov for steady flows. A finite-amplitude analysis for a marginally
unstable flow suggests that nonlinearities act to stabilize eastward and enhance the
instability of westward flows. Numerical simulations are presented to illustrate these
processes.

1. Introduction
Fronts and their associated currents play an essential role in the dynamics of the

world’s oceans. A typical physical characteristic of an oceanic front is a large change
in the density over a short length scale, and is seen in observations as a concentration
of sloped isopycnals. Large open-ocean fronts are created by differential heating
and wind stresses and can extend across entire ocean basins (Roden 1975). Coastal
currents also take the form of isolated fronts overlying sloping bottom topography.
These vary from weaker eastern boundary currents such as the California Current (see
Ikeda, Emery & Mysak 1984) to the western boundary currents such as the Kuroshio
(see Robinson 1983) and the Gulf Stream (see Bush, McWilliams & Peltier 1995). As
well, these currents can be global in scale such as the Antarctic Circumpolar Current
or more local phenomena such as the Gaspé current. The variety and importance of



162 R. H. Karsten and G. E. Swaters

frontal currents makes essential the development and analysis of general models that
can examine their dynamics.

Despite the variety of ocean surface fronts, they are largely geostrophic in nature,
that is, the velocity is principally determined by pressure gradients and the Coriolis ef-
fect (Robinson 1983). Yet, it is the variation from geostrophy, the ageostrophic effects,
that determines the existence and form of instabilities. As well, fronts are marked by
large-amplitude dynamical deflections in the isopycnals. These large deflections cause
relatively large velocities and, thus, the nonlinear advection, particularly in the mass
equation, cannot be assumed small. As such, the classic quasi-geostrophic (QG) model,
which assumes small isopycnal deflection and thus small velocities, is not applicable
(see Pedlosky 1987 for details of the QG model). This has lead many to examine
fronts using the primitive equations (see Griffiths, Kilworth & Stern 1982; Killworth
1983; Paldor 1983a, b; Killworth, Paldor & Stern 1984; Paldor & Killworth 1987; and
Paldor & Ghil 1990). However, the difficulty in examining the primitive equations
restricts the simple extension of QG analysis while the generalization of results to
include the β-effect or bottom topography and the extension to continuously stratified
flows are not trivial (Benilov & Reznik 1996). What is required is a simple, rational
theory for large-scale frontal dynamics that approximates the primitive equations in
such a manner as to include finite-amplitude isopycnal deflection and the dynamically
important ageostrophic effects while preserving leading-order geostrophy.

As discussed in Part 1 (Karsten & Swaters 2000), the search for such a theory lead
to the development of the large-amplitude geostrophic (LAG) models (see Cushman-
Roisin 1986; Benilov 1992; Cushman-Roisin, Sutyrin & Tang 1992; and Benilov &
Reznik 1996). These models assume that the characteristic length scale of the flow
exceeds the Rossby deformation radius, allowing for geostrophic flows with large-
amplitude deflections (Phillips 1963 and Yamagata 1982). As a simple manifestation of
an isopycnal model, the LAG models have the advantage that the vertical resolution
is concentrated where the horizontal density gradient is greatest and model surfaces
which are the preferred mixing surfaces of the ocean (Chassignet & Cushman-Roisin
1991). Importantly, the LAG models can be generalized to examine continuously
stratified flows (Benilov 1993, 1994) and can incorporate the β-plane approximation
(see Cushman-Roisin 1986; Cushman-Roisin et al. 1992; and Benilov & Reznik 1996)
or bottom topography (see Swaters 1991, 1993b, 1998a, b; Karsten & Swaters 1996b;
and Karsten 1998). As well, LAG models can include outcropping isopycnals that are
difficult to examine within shallow-water equations and impossible within the layered
QG formalism.

As we pointed out in Part 1 (see also Benilov 1992 and Benilov & Reznik 1996),
the strength of the β-effect greatly affects the mathematical structure of the model
equations derived and thereby the dynamical characteristics of the resulting flows
described. As the intrinsic length scale associated with the dynamics increases beyond
the Rhines scale, the β-effect becomes progressively more important and makes a
contribution even at leading order to the dynamics. The models corresponding to this
limit are referred to as strong-β models (Benilov 1992). In Part 1, we developed a
general stability analysis for steady solutions to these models. We established two new
nonlinear stability theorems and developed a linear and weakly nonlinear instability
theory as well as presenting numerical simulations. In particular, we identified a new
long-wave–short-wave resonance which is responsible for a transfer of energy to large
length scales. We examined the nonlinear evolution of the instabilities associated with
vanishing potential vorticity (PV) gradients (see Benilov 1995). We showed that a
barotropic instability existed in all models, with nonlinear effects leading to eddy
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formation when lower-layer effects were weak and breaking waves when they were
strong. We also illustrated the possibility of a growing baroclinic wave if the lower-
layer PV gradient vanishes in the thin-upper-layer model. This wave grows to large
amplitude but does not result in eddies pinching off from the front. Nevertheless, the
instabilities we described in Part 1 were either barotropic in nature or were slowly
growing.

On the other hand, smaller-scale, strong-flow currents like those associated with
coastal fronts are known to be important sources of instabilities. By smaller scale,
we mean intermediate length scales lying between the Rossby deformation scale and
the Rhines scale where the underlying dynamics are geostrophic to leading order and
the β-effect remains an important non-negligible effect but does not enter into the
dynamics at leading order. These models are referred to as weak-β models (Benilov
1992). The principal purpose of the present paper is to examine the nonlinear dynamics
of these flows. It has been shown that the weak-β models, unlike their strong-β
counterparts, exhibit linear baroclinic instability (Benilov 1992; Benilov & Cushman-
Roisin 1994; Reszka & Swaters 1999a). As we shall show, the finite-amplitude effects
can either accelerate the instability leading to explosive growth or, depending on the
underlying parameters, inhibit the instability eventually saturating it. Our theoretical
finite-amplitude analysis and numerical simulations suggest that the formation of
coherent vortex structures during the destabilization of weak-β fronts is correlated
with the presence of explosively unstable modal amplitudes.

The intermediate scale is of significant size in the ocean (Charney & Flierl 1981) and
there is growing evidence of the increasing number and importance of oceanic phe-
nomena that populate this scale (see Cushman-Roisin et al. 1992; Tang & Cushman-
Roisin 1992; Benilov & Reznik 1996; Reszka & Swaters 1999a; and Part 1). These
include unstable coastal fronts (Ikeda et al. 1984; McCreary, Fukamachi & Kundu
1991; Barth 1989a) and mesoscale ocean eddies (Olson et al. 1985). Recent analysis of
topex/poseidon data indicates that eddy energy in the ocean is concentrated at scales
several times the deformation radius (Stammer 1997). As well, analysis of baroclinic
waves often indicates a most unstable wavelength greater than the deformation scale
(Griffith & Linden 1981; Griffiths et al. 1982; Ikeda & Emery 1984; Ikeda et al. 1984;
and Flierl, Malanotte-Rizzoli & Zabusky 1987). In some cases, frontal instability
was only observed when frontal widths exceeded several deformation radii (Griffiths
& Linden 1981) and this is supported by primitive equation analysis (Killworth &
Stern 1982). Increasing the motion amplitude (Griffiths et al. 1982) and nonlinear
interactions (Ikeda & Emery 1984; Ikeda et al. 1984; McCreary et al. 1991) generally
lead to yet larger scales.

Understanding the characteristics of these intermediate-scale phenomena has be-
come increasingly important. Fronts contain large sources of available potential
energy since the isopycnal configurations tend to be far from a state of no motion.
This energy can be released if the front becomes unstable and small variations in
the front grow to form large meanders and eddies. Such meanders and eddies are
the main source of the mesoscale mixing and transport that occurs in the oceans.
The proper resolution and/or inclusion of this eddy transport and mixing into ocean
circulation models is an active area of research (see, for example, Barth 1989a; Bush
et al. 1995; Greatbatch 1998; and Visbeck et al. 1997). On a smaller scale, unstable
coastal currents play a significant role in the upwelling of nutrients and the creation of
cross-shore flows (see Ikeda & Emery 1984; Ikeda et al. 1984; McCreary et al. 1991;
Haidvogel, Beckman & Hedstrom 1991; and Barth 1989a). In all these examples of
baroclinic instability, of greatest interest are finite-amplitude waves that have grown
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to large meanders and eddies and are inherently nonlinear. Therefore, it is important
to develop a comprehensive understanding of the nonlinear dynamics.

While analysis of nonlinear effects in QG models has provided great insight into
aspects of nonlinear evolution of fronts, it also raises some questions. For QG
models it was shown that nonlinear effects could suppress linear growth, leading to
periodic amplitude modulation (Pedlosky 1987). A similar result holds for constant-PV
models (Paldor 1987 and Ghil & Paldor 1994). Subsequently, nonlinear wave–wave
interactions transfer energy to larger scales forming large meanders which then,
through an interaction among various wavelengths, pinch off into eddies (Ikeda et al.
1984; Feliks & Ghil 1996). However, it was also concluded that extended QG theory
would not properly describe the nonlinear dynamics because it does not discriminate
between cyclones and anticyclones, while the latter are favoured in primitive-equation
models and observations (Boss, Paldor & Thompson 1996). As well, these fronts
have been shown to be unstable even when QG theory would have predicted stability
(Paldor & Killworth 1987). In a turbulent ocean governed by QG dynamics, nonlinear
interactions of eddies lead to a cascade of energy to the Rhines scale and the ultimate
destination of any initial regime is decay into linear Rossby waves (Tang & Cushman-
Roisin 1992). Yet, recent observations (Stammer 1997) indicate that the dominant
eddy scale in the oceans is several times the deformation radius, significantly less
that the Rhines scale. While it has been postulated that the forcing, topography or
frictional effects can account for such a scale discrepancy, no unified theory exists.
Together, these issues raise the question of whether the nonlinear, large-amplitude
evolution of baroclinic instability can be properly modelled under the assumption of
QG models.

On the other hand, the LAG models appear well suited to study these nonlinear
effects. The LAG models retain not only the nonlinear advection of momentum but
also the nonlinear mass transport inherent when large variations in frontal thickness
are allowed. This fundamental nonlinear process of the primitive equations is not
retained in the QG limit. The LAG models are similar in form to the layered QG
model, and thus allow similar analysis while emphasizing the effects of large-amplitude
isopycnal deflections. In contrast to the linear stability properties of the strong-β
models (see Part 1), the weak-β models allow for vigorous baroclinic instability
(except, of course, in the uncoupled model) in the form of large-scale baroclinic
instability predicted by Griffiths & Linden (1981) and thus are appropriate to examine
the nonlinear evolution of baroclinic instability.

In Reszka & Swaters (1999a), a finite-amplitude stability theory using the Swaters
(1993b) model suggested that nonlinearities could both stabilize and further desta-
bilize linearly unstable waves depending on the underlying parameter values. Most
dramatically, numerical solutions illustrated the rapid development of eddies from
both isolated and coupled fronts. These numerical solutions, and those of Reszka &
Swaters (1999b), gave credibility to the belief that this relatively simple two-layer LAG
model was capturing the essential physical process which led to the formation of cold
and warm core eddies as well as jets and squirts similar to those seen in the numerical
studies of McCreary et al. (1991), Haidvogel et al. (1991), Barth (1994) and Spall
(1995), for example. In a study of geostrophic turbulence, LAG models have been
shown to arrest the cascade of energy to larger scales, resulting in a concentration
of energy at several times the deformation radius (Tang & Cushman-Roisin 1992).
Thus, LAG models do capture observed features of oceanic fronts not modelled in
the QG limit.

However, it has been argued that the nonlinear models examined previously are
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not applicable to realistic ocean fronts as they impose too great a restriction on the
depth of the front (Benilov & Reznik 1996). Within the weak-β models, the relative
depth of the frontal layer, H1, to the total ocean depth, H , plays an important role in
determining the exact mathematical form of the model. We can consider two limits
for the depth ratio: the thin-upper-layer limit where H1 � H but where lower-layer
motion is still important and the equal-layers limit where H1 ∼ H and the motion in
both layers contributes equally to the flow evolution. The uncoupled model, where the
depth ratio becomes infinitesimal and the baroclinic flow evolves independent of the
barotropic flow, is similar in form to the strong-β, uncoupled model but no longer
retains any β-plane terms, see Part 1. In this paper, we examine the nonlinear aspects
in the weak-β models for all depth ratios. In doing so, we illustrate the changes
that occur as we extend the model to large depth ratios. As well, by presenting this
analysis in conjunction with Part 1 which examines the nonlinear effects in strong-β
models, we are able to present a complete analysis for all possible two-layer LAG
models.

We also address the similarity of bottom topography and the β-effect within the
weak-β LAG limit (see Karsten & Swaters 1999 for a complete discussion). On
the intermediate scales of the weak-β models, often, e.g., for coastal currents, the
background vorticity gradient supplied by bottom topography is more important
than the β-effect. When bottom topography must be included in the dynamics, but
is still a second-order effect, models analogous to the weak-β equations result (see
the discussion in the Appendix or, for more details, Swaters 1991, 1993b and Karsten
& Swaters 1999). While topography can play an essential role in the evolution of a
front (see Reszka & Swaters 1999b), in this paper we will focus on weak-β models
with no bottom topography. However, in the Appendix, we discuss how the models
and analysis can be generalized to include the effects of bottom topography.

The plan of this paper is as follows. In § 2, we give a brief derivation of the weak-β
two-layer LAG models examined. In § 3 and § 4 we examine the equal-layers and thin-
upper-layer models, respectively. In both sections, we begin by presenting the model
equations, and a brief review of the linear stability characteristics and solutions
is given. Next, based on the nonlinear invariants, we present a nonlinear stability
analysis. Then, using the linear solutions, we present a finite-amplitude analysis that
examines the evolution of a marginally unstable slowly varying wave-train under the
influence of weak nonlinear effects. Because much of the work on the thin-upper-layer
model has been presented previously, albeit in a different context, we will be brief
in our presentation of this material. In § 5, we describe numerical simulations of the
weak-β LAG models concentrating on illustrating the finite-amplitude behaviour and
the effects of varying the depth ratio. Finally, in § 6, a summary and the conclusions
of the paper as well as comments on future work are presented.

2. Model derivation
The weak-β two-layer large-amplitude geostrophic models are derived from the two-

layer shallow-water equations following Benilov & Reznik (1996) (see also Cushman-
Roisin et al. 1992 and Karsten & Swaters 1999). The underlying physical geometry is
shown in figure 1 in Part 1. Under the assumptions of LAG dynamics, the two-layer
shallow-water equations reduce to general LAG model, equation (2.1) and (2.2) in
Part 1. The weak-β models are scaled such that the barotropic relative vorticity terms
and β-plane term are of similar size, that is, when the length scale is the Rhines
scale (L = LLAGRh and γ = 1 in the general equations in Part 1). The general LAG
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equations reduce to

∆ψt + J(ψ,∆ψ) + βψx + µ∇ · [h(1− δh)J(h,∇h)] = 0, (2.1)

ht + J(ψ, h)− ν∇ · [h(1− δh)(1− 2δh)J(h,∇h)] = 0, (2.2)

where h is the upper-layer depth and the leading-order baroclinic stream function
and ψ is the barotropic stream function. These are the general weak-β LAG equations.
The non-dimensional parameters are given by

ε =
U

f0L
=

(
RI

L

)2

, δµ =
H1

H
, ν =

ε√
δ
. (2.3)

The parameter ε is the Rossby number defined in terms of the baroclinic velocity
scale U, the Coriolis parameter f0 and the horizontal length scale L, which reduces
to the square of the ratio of the internal Rossby deformation (RI =

√
g′H1/f) to

the length scale (see Part 1 for more details). As such, the weak-β model is truly an
intermediate-scale model with RI � L . LLAGRh. (Note that if the length scale is less
than the Rhines scale, the β-effect may not enter into the leading-order barotropic
equation (2.1).) The depth ratio is split into two parts. The parameter δ measures
the scale of the ratio; its choice determines the model. The parameter µ is an O(1)
parameter that allows variance of the depth ratio within the chosen model. The
parameter ν compares the strength of the nonlinear frontal terms to the strength
of the coupling term in the baroclinic equation. The auxiliary O(1) parameter β is
introduced to clearly indicate variance of β-effect after the scaling has been chosen.

Note that when the upper layer vanishes, h = 0, the model reduces to the equation

∆ψt + J(ψ,∆ψ) + βψx = 0.

This equation describes the QG motion of a single layer on a β-plane in terms of
the stream function ψ. This should be contrasted to the strong-β model where the
equations do not describe any dynamics in this limit (see the discussion in Part 1).

For the analysis presented in this paper, we examine the fronts in a zonally periodic
channel given by

Ω = {(x, y) | xL < x < xR, −∞ 6W1 < y < W2 6 ∞}.
The periodicity represents the extended length scale in the east–west direction. All
variables are assumed periodic in x. The boundary conditions simply reduce to the
no-normal-flow conditions on the channel walls, that is, hx = ψx = 0 on y = W1,2.
When fronts outcrop, additional boundary conditions are required at the outcropping
(see Swaters 1993b and Karsten 1998). However, the appropriate dynamic boundary
condition on an outcropping is the upper-layer PV equation itself when evaluated on
the outcropping. And since the baroclinic equation is trivially satisfied when h = 0,
it applies equally well on either side of the outcropping. This greatly simplifies the
numerical modelling of outcropping fronts as no additional term that tracks the
outcropping is required.

It is often useful to examine fronts which overlie bottom topography. As with QG
models, the background vorticity gradient provided by bottom topography is similar
to the β-plane effect. Bottom topography often becomes more important than the
β-plane effect when coastal fronts are considered. Karsten & Swaters (1999) discuss
the details of deriving LAG models when bottom topography is included. Here we
note simply that the weak-β model can include the effects of bottom topography. In
the Appendix, we present the model equations and how the analysis changes when
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bottom topography is included. The domains and boundary conditions mentioned
above can be used for coastal fronts if we define x as the along-front or shore
coordinate and y as the cross-front or slope coordinate.

Finally, it should be noted that the geometric distortion associated with the approxi-
mation of the spherical Earth’s surface with planar geometry can also be considered
in the derivation of the LAG models. In Karsten & Swaters (1999), it was shown
that this distortion leads to an additional term in the governing equations at high
latitudes.

3. Equal-layers model
3.1. Model equations

The equal-layers model corresponds to a situation where the depth ratio is O(1) and
so we set

δ = 1 and ν = ε. (3.1)

The model equations (2.1) and (2.2) reduce to

∆ψt + J(ψ,∆ψ + βy) + µJ[h, h(1− µh)∆h+ 1
2
(1− 2µh)|∇h|2] = 0, (3.2)

ht + J(ψ, h) = 0, (3.3)

where we have expanded the divergence terms using the Jacobian notation. These are
the weak-β equal-layers LAG equations.

This model was first examined in Benilov (1992) and a reduced limit of this model,
corresponding to µh � 1, was analysed in Benilov & Cushman-Roisin (1994). Due
to the large upper-layer depth, (3.2) contains quartic nonlinearities in h. The strong
coupling between the baroclinic and barotropic modes (the two are scaled equally)
and the weak β-plane result in the baroclinic equation only balancing the diagnostic
and coupling term.

The equal-layers model can be simplified through a transformation of variables
presented in Benilov (1992). The transformation changes the frontal height h(x, y, t)
to a new variable h(x, y, t) defined by

h(x, y, t) =

∫ h(x,y,t)

0

√
µξ(1− µξ) dξ. (3.4)

It is not straightforward to give a physical interpretation for h although it does appear
to be some sort of a geometric average of the scaled layer depths µh and 1− µh.

Substituting (3.4) into (3.2) and (3.3) gives the transformed model equations

∆ψt + J(ψ,∆ψ + βy) + µJ(h,∆h) = 0, (3.5)

ht + J(ψ, h) = 0. (3.6)

This model is identical to the transformed model discussed in Benilov & Cushman-
Roisin (1994), where the transformation (3.4) in the limit µh� 1 was used.

Under the transformation (3.4) certain regularity conditions must be imposed on
the frontal height h at an outcropping if h is to be well defined there. Rather than
discuss these conditions in detail, we will only use the transformed model to discuss
fronts that do not outcrop. This suits the purpose of the nonlinear analysis that is
the focus of this paper. For a complete discussion see Karsten (1998).

While the transformation (3.4) simplifies some of the analysis that follows, it
obscures the physical insight somewhat since the connection between the quantity h
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and physical quantities such as the baroclinic velocity and PV is unclear. The fact
that the transformation is not readily invertible is another drawback. As well, the
use of a nonlinear transformation to study linear and weakly nonlinear aspects of a
model is somewhat confusing. Yet, the transformation allows us to examine solutions
that do not have restrictions on the initial amplitude of the basic state flow. This is a
desirable attribute as it allows us to examine the extension of the analysis of gently-
sloping fronts to the strong flows that the LAG models were originally designed to
describe.

As in Part 1, we examine basic states that correspond to zonal flows where the
frontal height varies only in the meridional direction. (Unlike Part 1, we will not
assume that the barotropic flow is necessarily quiescent.) While some of the analysis
is applicable, in principle, to fronts with outcroppings, the nonlinear analysis which is
the focus of this paper assumes that fronts do not outcrop. Therefore, in the analysis
of here and in § 4, we assume that the basic-state upper-layer thickness does not
outcrop.

3.2. Linear analysis

We briefly review some of the previous linear analyses and present linear solutions
to the equal-layers model. In order to continue our analysis, we introduce the normal
mode decomposition

h(x, y, t) = h0(y) + h̃(y) exp [i(kx− ωt)] + c.c.,

ψ(x, y, t) = ψ0(y) + ψ̃(y) exp [i(kx− ωt)] + c.c.,

}
(3.7)

where (h0, ψ0) are the mean flow and (h̃, ψ̃) are the amplitudes of a perturbation wave,
k > 0 is the along-front wavenumber, ω = ωR + iωI is the complex-valued frequency,
and c.c. means complex conjugate. The phase and group velocities of the travelling
wave are given by

c = cR + icI =
ω

k
and cG =

∂ω

∂k
,

respectively. For the models examined in this paper, if the imaginary part of the
frequency is non-zero, i.e. ωI 6= 0, then the front is linearly unstable and there
exists a normal mode with an amplitude that will grow exponentially rapidly in
time with a growth rate of σ = |ωI | = k|cI |. If ωI = 0 the wave is neutrally
stable.

The normal mode equations are found by substituting (3.7) into (3.2) and (3.3) and
retaining only the linear perturbation terms giving

(c+ ψ′0)ψ̃
′′ − [(c+ ψ′0)k

2 + ψ′′′0 + β]ψ̃

+µ{[h0(1− µh0)(h
′
0h̃
′ − h′′0h̃)]′ − h0(1− µh0)h

′
0k

2h̃} = 0, (3.8)

[c+ ψ′0]h̃− h′0ψ̃ = 0. (3.9)

The no-normal-flow conditions on the channel walls reduce to h̃, ψ̃ = 0 on y = W1,2.
Linear boundary conditions at outcroppings can be derived as in Swaters (1993b),
but are not needed here.

In terms of the variable h, if we introduce

h(x, y, t) = h0(y) + h̃(y) exp [i(kx− ωt)] + c.c., (3.10)
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it follows from (3.5) and (3.6) that normal mode equations are

(c+ ψ′0)ψ̃
′′ − [(c+ ψ′0)k

2 + ψ′′′0 + β]ψ̃ + [h
′
0h̃
′′ − (h

′′′
0 + k2h

′
0)h̃] = 0, (3.11)

[c+ ψ′0]h̃− h′0ψ̃ = 0, (3.12)

with h̃ = 0 on y = W1,2.
Analysis of these equations is given in Benilov (1992) and in Benilov & Cushman-

Roisin (1994) for the reduced model. In particular, it was shown that monotonic,
non-outcropping fronts are linearly stable as k →∞ only if

h′0 = 0, ∀ W1 6 y 6W2.

Therefore only fronts of constant height are linearly stable for all wavenumbers. All
other monotonic, non-outcropping fronts can be shown to be unstable as k → ∞,
that is, as the wavelength of the perturbations becomes very small. This result can
be extended to outcropping fronts as well with a proper discussion of boundary
conditions (see Karsten 1998). Since the shear associated with non-monotonic fronts
is expected to destabilize fronts (see the discussion in Part 1 and Karsten 1998), and
non-zonal flows are unstable (Benilov 1992), we expect that all fronts are unstable as
length scales become small. Note that as k →∞ the assumption that all terms in (3.5)
and (3.6) are O(1) is invalid; the length scales have become too small to be modelled
with the assumed underlying scaling. This problem of a model being unstable at small
scales, beyond the scope of the model, will be discussed in more detail in the context
of a linear solution below.

In the equal-layers model, the leading-order PV in each layer has gradients of
opposite sign at all points except when h′0 = 0. Thus, all flows satisfy the condition
that instability in a two-layer QG model is possible if the PV gradient reverses sign
across the layer interface (Pedlosky 1987). Assuming instability occurs, it is possible
to derive restrictions on the values of cR and cI analogous to Howard’s semi-circle
theorem (Drazin & Reid 1981). But as the focus of this paper is nonlinear aspects,
we leave this analysis for another time.

To complete the linear analysis and allow finite-amplitude analysis, we need to
discuss solutions to the linear model. We present linear solutions for a gently sloping
front and a wedge front of large amplitude. The analysis below does hold for a
constant barotropic flow, ψ′0 = −U0, but as can be seen from (3.11) and (3.12) the
effect of such a flow is only to vary the phase velocity by the value −U0. As such, we
choose U0 ≡ 0 for the analysis of these fronts.

For a gently sloping front we take

h0(y) = 1 + α

(
y − W2 −W1

2

)
, W1 6 y 6W2, (3.13)

where h0 > 0 and 1− µh0 > 0 for all y, that is, the thickness of either layer does not
vanish. We also assume that the slope of the front, α, is small, that is

α = ∆α̃, (3.14)

where 0 < ∆ � 1 and α̃ = O(1). In order that non-trivial dynamics occurs (see (3.8)
and (3.9)) we must also assume

β = ∆β̃, ω = ∆ω̃, c = ∆c̃, (3.15)

where β̃, ω̃ and c̃ are O(1) parameters. (The rescaling of the frequency and phase
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velocity is equivalent to rescaling time to a longer scale.) These rescalings allow us to
examine what is essentially a QG flow, small-amplitude deflections in the interface,
but at the longer time and large length scales of the LAG model.

Making the above substitutions into (3.8) and (3.9) gives, to leading order in ∆,

c̃ψ̃′′ − [c̃k2 + β̃]ψ̃ + µ(1− µ)α̃[h̃′′ − k2h̃] = 0,

c̃h̃− α̃ψ̃ = 0.

}
(3.16)

In order to satisfy the boundary conditions, it follows that

h̃ = A sin (`y), ` =
nπ

W2 −W1

, n = 1, 2, 3, . . . , (3.17)

where A is a free amplitude constant, with the dispersion relation

c̃(k, `) =
−β̃ ±√β̃2 − 4µ(1− µ)α̃2K4

2K2
, (3.18)

where K =
√
k2 + `2 is the total wavenumber. The barotropic stream function is given

by

ψ̃ =
c̃

α̃
h̃. (3.19)

These solutions are unstable when the imaginary part of c̃ is non-zero, that is, when
the frontal slope exceeds a critical value

|α| > αc =
β̃

2[µ(1− µ)]1/2K2
, (3.20)

or, alternatively, if the length scale of the wave is sufficiently small so that the total
wavenumber satisfies

K4 >
β̃2

4µ(1− µ)α̃2
. (3.21)

This implies that all fronts will become unstable as k and ` become large, that is, as
the wavelength of the motion becomes small. When the wave is unstable its growth
rate σ̃ is given by

σ̃ = kc̃I = k

√−β̃2 + 4µ(1− µ)α̃2K4

2K2
,

which grows linearly with k for large k. The group velocity for this solution is

c̃G(k, `) =
β̃c̃(k2 − `2)− 2µ(1− µ)α̃2K4

2c̃K2 + β̃
. (3.22)

The expressions for the growth rate and conditions for instability allow a complete
discussion of the small-scale instability. Fronts not only become unstable as the
wavelength of the perturbation becomes small but, since the growth rate grows
with k, the small-wavelength instabilities grow faster as their size decreases. Thus,
the linear analysis leads to the conclusion that there will be catastrophic unstable
growth at small (ultraviolet) wavelengths and hence is referred to as an ultraviolet
catastrophe. The occurrence of an ultraviolet catastrophe in multi-layer strongly-
coupled planetary geostrophic models is common (de Verdiérre 1986). This form of
instability was also observed in the analysis of Paldor & Ghil (1990, 1991) and Barth
(1994). Paldor & Ghil (1990) suggested that it is the availability of baroclinic energy
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as seen through Reynolds stresses or phase differences between the two layers that
leads to this vigorous short-wave instability when layer depths are of the same order.
The difficulty with such instability is that the model is not self-contained, that is, the
solution is driven outside of the region where the model applies (Benilov & Reznik
1996).

The form of the equations is critical for the possibility of an ultraviolet catastrophe.
The balance of the QG-like terms and LAG terms in the barotropic equation (3.2)
allows both to grow to large size. The absence of frontal terms in (3.3) means there
are no terms preventing growth at small scales (compare this result to the linear
result of § 4.2 for the thin-upper-layer model where frontal terms are included in the
baroclinic equation). The balance is not able to suppress this growth in the linear
model. Whether or not nonlinear effects can suppress this growth is the focus of § 3.4
and § 5.1. As well, we examine whether the inclusion of higher-order Rossby number
terms, especially the frontal terms, can suppress this growth.

Benilov & Cushman-Roisin (1994) found an exact solution to the transformed
model linear stability equations (3.11) and (3.12) when h0 is given by the wedge front
(3.13) with α is no longer assumed to be small. It is important to appreciate that
this does not correspond to a linearly sloping front since the transformation (3.4) is
nonlinear. Hereafter, this front will be referred to as the ‘wedge front’ to differentiate
it from the ‘gently sloping front’ analysed above.

In this case the linear normal mode equations (3.11) and (3.12) reduce to

−c[ψ̃′′ − k2ψ̃] + βψ̃ − α(h̃′′ − k2h̃) = 0,

ch̃− αψ̃ = 0.

This equation is identical to (3.16) if µ(1 − µ) is set to 1 and the tildes are dropped
from α, β and c. Therefore, the solution (3.17)–(3.19) and formulas (3.20)–(3.22) hold
appropriately. The similarity of the two solutions indicates that the solution for the
gently sloping front is capturing the essential characteristics of the model despite
assuming a relatively weak flow.

3.3. Nonlinear invariants and stability implications

We now discuss the invariants of the equal-layers model and use these to discuss
nonlinear stability. In the definitions below we allow for the case of outcropping
fronts. To do so, we introduce the domain F as the subset of Ω where the upper
layer exists, i.e. where h 6= 0, and the domain NF as the subset where it does not,
i.e. where h = 0.

The invariants can be derived by considering various conserved quantities of the
shallow-water equations. Benilov (1992) showed that the functional given by

E(h, ψ) =
1

2

∫ ∫
Ω

|∇ψ|2 dx dy − µ

2

∫ ∫
F
h(1− µh)|∇h|2 dx dy (3.23)

is an invariant of (3.2) and (3.3). Since E corresponds to the difference between
the barotropic kinetic energy (KE) and the baroclinic KE we refer to (3.23) as the
pseudo-energy. The invariance of E has important consequences for instability since it
requires that both the barotropic and baroclinic modes must increase/decrease their
KE concurrently (see § 5).

There is also an invariant associated with the conservation of PV given by

C(h, ψ) =

∫ ∫
NF

Φ2(∆ψ + βy) dx dy +

∫ ∫
F

(∆ψ + βy)Φ1(h) + Φ3(h) dx dy, (3.24)
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where Φ1, Φ2, and Φ3 are sufficiently smooth functions of their arguments chosen so
that any values associated with the variation of the outcropping are eliminated.

And, finally, we have the zonal momentum invariant given by

M(h, ψ) =

∫ ∫
Ω

y∆ψ dx dy. (3.25)

Proving that these functionals are, in fact, conserved by the model can be done by
using the governing equations and the boundary conditions or as a result of the
conservation of energy and PV by the shallow-water equations (see Karsten 1998).

We can attempt to derive nonlinear stability conditions as in Karsten & Swaters
(1996b). To do so we form the invariant functional

J(h, ψ) = M(h, ψ)−M(h0, ψ0) + C(h, ψ)− C(h0, ψ0), (3.26)

where (h0, ψ0) = (h0(y), ψ0(y)) represents a basic-state zonal flow and M and C are
given by (3.25) and (3.24), respectively, with the domains of integration extended to
the entire domain Ω. (The first term in (3.24) vanishes since NF vanishes when the
upper layer is extended to the entire domain.) Then, from (3.26), we have

J =

∫ ∫
Ω

[y+Φ1(h)](∆ψ+βy)− [y+Φ1(h0)](∆ψ0 +βy) +Φ3(h)−Φ3(h0) dx dy. (3.27)

The first variation of J is given by

δJ =

∫ ∫
Ω

{[Φ′1(h)(∆ψ + βy) + Φ′3(h)]δh+ [y + Φ1(h)]∆δψ} dx dy.

In order that δJ vanishes for (ψ, h) = (ψ0, h0), we choose Φ1 and Φ3 to satisfy

Φ1(h0) = −y, (3.28)

Φ′3(h0) = −(∆ψ0 + βy)Φ′1(h0). (3.29)

If we let (h, ψ) = (h0, ψ0) + (h̃, ψ̃), where (h̃, ψ̃) is a finite-amplitude perturbation, it
follows from (3.27) using (3.28), that

J(h̃+ h0, ψ̃ + ψ0) =

∫ ∫
Ω

{
Φ3(h0 + h̃)− Φ3(h0)

+[Φ1(h0 + h̃)− Φ1(h0)][∆(ψ0 + ψ̃) + βy]
}

dx dy. (3.30)

We assume that Φ1 and Φ3 satisfy the bounds

A1 < Φ′′1(ξ)(∆ψ0 + βy) + Φ′′3(ξ) < B1, ∀ ξ > 0 and ∀ y ∈ Ω, (3.31)

A2 < Φ′1(ξ) < B2, ∀ ξ > 0, (3.32)

for some constants A1,2 and B1,2. If (3.31) is integrated twice, first from h0 to ξ, using

(3.29), and then from h0 to h̃+ h0, and (3.32) is integrated once from h0 to h̃+ h0 and
taking the absolute value, it follows that

A1

2
h̃2 < [Φ1(h̃+ h0)− Φ1(h0)][∆ψ0 + βy] + Φ3(h̃+ h0)− Φ3(h0) <

B1

2
h̃2, (3.33)

|Φ1(h̃+ h0)− Φ1(h0)| < max (A2, B2)|h̃|. (3.34)
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Using (3.33) and (3.34) with (3.30) gives∫ ∫
Ω

A1

2
h̃2 −max (A1, B2)|h̃||∆ψ̃| dx dy < J(h̃+ h0, ψ̃ + ψ0)

<

∫ ∫
Ω

B1

2
h̃2 + max (A2, B2)|h̃||∆ψ̃| dx dy. (3.35)

In order to establish conditions for nonlinear stability, we need to establish condi-
tions that guarantee that J is either positive or negative definite. To establish such
bounds would require that we establish conditions such that the bound on the left
(right) in (3.35) is positive (negative) definite for all perturbations. Such conditions
would require an inequality of the form

A1

2
|h̃| > max (A2, B2)|∆ψ̃|,

or
B1

2
|h̃| 6 −max (A2, B2)|∆ψ̃|,

respectively. These conditions, in turn, require that the perturbation to the barotropic
relative vorticity be somehow bounded by the perturbation to the upper-layer height,
that is

|∆ψ̃| 6 C|h̃|, (3.36)

for some positive constant C . This is clearly not true for general perturbations and
specifically not true as length scales become small.

We can relate (3.36) to the analysis in § 3.2 by associating ∆ψ̃ with k2ψ̃. Then for
(3.36) to hold, we require

k2|ψ̃| 6 C|h̃|,
which will only hold as k → ∞ if we do not allow perturbations to the stream
function, ψ̃ = 0, or the perturbations to the frontal layer become large, h̃ → ∞. The
latter case corresponds to instability, that is, unbounded growth in the perturbations,
and the former is a restriction that allows for no barotropic flow and, from (3.3), only
steady baroclinic flow and thus is trivially stable. Thus, although we cannot prove
that it is impossible it is to establish nonlinear stability conditions, it appears to be
unlikely since it is not possible to bound the small-scale growth.

3.4. Finite-amplitude analysis

In this subsection, the effects of the nonlinear terms in the model are examined. We
begin by deriving the envelope equation governing the finite time and space evolution
of the amplitude of a given wave-train. The method follows that of Pedlosky (1970,
1987), and is similar to the analysis of Mooney & Swaters (1996) and Reszka &
Swaters (1999a). As in any weakly nonlinear calculation the details of the calculation
are quite lengthy. In this paper, our presentation will be brief with the remaining
details given fully and completely in Karsten (1998).

The finite-amplitude analysis is performed on a marginally unstable front. That is,
we choose

α = αc + υ∆2, (3.37)

where αc is the critical slope for instability given by (3.20) and υ is an O(1) parameter
that allows us to adjust the size of the linear growth rate. For the gently sloping front,
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the size of ∆ is determined by the small slope of the basic state. For the wedge front
we are free to choose ∆ as long as it remains small.

In order to facilitate a weakly nonlinear analysis, slow space and time variables
are introduced. These allow the space and time scales associated with the nonlinear
interaction of the fundamental mode to be examined. This is done by letting

T = ∆t̃, X = ∆x, X = ∆2x, (3.38)

where for the gently sloping front t̃ = ∆t in accordance with the necessary rescaling
discussed in § 3.2, while t̃ = t for the wedge front.

The perturbations are small in amplitude compared to the basic-state solution, and
are expanded in an appropriate power series in ∆, that is

(h, ψ) = (h0, 0) + ∆m[∆(h, ψ)(0) + ∆2(h, ψ)(1) + ∆3(h, ψ)(2) + · · ·], (3.39)

where m = 1 for the gently sloping front to reflect that the perturbations are smaller
than the O(∆) frontal variations while m = 0 for the wedge front. Because of
the underlying asymptotic approximations used to derive the weak-β models, the
meridional boundary conditions are simply those discussed for the linear problem
at all orders of ∆. In addition, as it turns out, there is no higher-order mean flow
generated (full details can be found in Karsten 1998) and thus it is not necessary to
impose additional boundary conditions on the zonally averaged stream function in
the upper and lower layers as one does in, for example, weakly nonlinear baroclinic
instability in the Phillips model (see Pedlosky 1987).

Taking into consideration (3.38) and (3.39) the model equations (3.2) and (3.3) can
be expanded in powers of ∆. Setting the coefficients of terms in similar orders of ∆
to zero gives a series of problems that must be solved. The solvability conditions that
arise at each order eventually give rise to an evolution equation for the slowly varying
amplitude of the linear solution.

The leading-order problem is the linear stability problem for the given basic state
as discussed in § 3.2. The solution is given by

h(0) = A(X,X, T )h̃(y) exp [i(kx− ωt)] + c.c.,

ψ(0) = A(X,X, T )ψ̃(y) exp [i(kx− ωt)] + c.c.,

}
(3.40)

where A(X,X, T ) is the slowly varying amplitude. The functions h̃ and ψ̃ are given by
(3.17) and (3.19), respectively, with the frequency determined by (3.18).

At the next order, an asymptotically consistent solution can only be found provided

AX = 0. (3.41)

Similarly, all variables are henceforth assumed independent of X. The group velocity,
given by (3.22) is infinite at α = αc. Thus (3.41) is the simple statement that to this
order the wave amplitude, and thus the wave energy, travels at the group velocity.
Finally, in the third-order problem, an asymptotically consistent solution can only be
found provided

ATT + iχAX = (σ2 − Γ )A−N(|A|2 − |A0|2)A, (3.42)

where A0 = A(T = 0).
For the gently sloping front the coefficients in (3.42) are given by

χ =
k3β2

(k2 + `2)3
, (3.43)
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σ2 =
υk2βµ(1− µ)

K2
, (3.44)

N =
2µ(1− µ)k2`2(k2 − `2)

K2
, (3.45)

Γ = − 2

L(k2 + `2)

∫ L

0

γ(y)h̃(y) dy, (3.46)

where the details of the derivation of the kernel function γ(y) are discussed fully in
Karsten (1998) but are not particularly important in the analysis presented here and
thus omitted. For the wedge front, the coefficients are the same with µ(1− µ) set to 1
and Γ = 0.

The fact that the evolution equations are almost identical for the two basic states
is not surprising. However it should be stressed that the second analysis of this
section holds for wedge fronts with no limitations on the frontal slope, while the
gently sloping front analysis assumed the frontal slope was small. This leads to
the very important conclusion that the weakly nonlinear analysis that is performed
under the simplifying assumptions of a gently sloping front does indeed capture the
essential nonlinear aspects of the model even when these assumptions break down.
However, the similarity of the evolution equations is also a result of the similarity
of the eigenfunctions and hence, the expansion of the nonlinear terms. As shown
in the analysis of the strong-β model, if the structure of the eigenfunctions changes
a greater array of interactions can occur (see Part 1). However, our analysis of the
weak-β model indicates that the analysis of the gently sloping front does capture the
qualitative behaviour of the nonlinear effects.

Before discussing solutions of (3.42), it should be noted that the assumption that
αc > 0 is not important in the analysis. Indeed, the above analysis can be carried
out with αc < 0 and the same evolution equation is obtained. The only change that
occurs is that in this case

α = αc − υ∆2.

This is reasonable as the linear results are also identical for positive and negative α
which, in turn, implies that these results are symmetric for eastward and westward
flows.

We write equation (3.42) in a slightly simpler form by introducing

ς = σ2 − Γ +N|A0|2, (3.47)

giving

ATT + iχAX = ςA−NA|A|2. (3.48)

Equation (3.48) is the unstable nonlinear Schrödinger equation (UNLS) derived, in
the geophysical fluid dynamics context, by Pedlosky (1972) and discussed further
in Tan & Liu (1995) for the two-layer Phillips model and derived in Mooney &
Swaters (1996) for the Swaters (1991) model in the context of bottom-intensified
frontal dynamics on sloping topography.

Referring to (3.42), the parameter σ represents the small linear growth of the
marginally unstable mode. The parameter N represents the result of the nonlinear
interactions. The parameter Γ represents the corrections to the linear growth rate as
higher-order linear terms are considered. The manner in which Γ depends on the y
structure of the linear solution is discussed in Karsten (1998). For the wedge front,
all fast-varying linear terms are included in the leading-order problem and no such
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Figure 1. The blow-up time for solutions with k < `. The blow-up time becomes infinite as k
tends to zero and ` is a minimum at k ≈ 0.8`.

correction occurs, that is Γ = 0. These correction terms can either stabilize or further
destabilize the front moving the marginal stability curve. In the following analysis,
we wish only to consider the nonlinear modulation of a marginally unstable front
and therefore assume that σ2 − Γ is positive. We do present some brief analysis of
marginally stable fronts at the end of this section, and cases where σ2−Γ is negative
are included in this analysis.

Assuming linear instability, the question we wish to answer is how the nonlinearities
affect the unstable growth. The nonlinear terms in the UNLS will dampen the growth
of the instability when N > 0, and will enhance the growth of the instability when
N < 0. The fact that N changes signs when k = ` in this model will lead to additional
analysis not found in, for example, Pedlosky (1970) or Mooney & Swaters (1996) but
similar to that found in Reszka & Swaters (1999a). On the other hand, the lack of a
critical shear value, a positive critical value of |α| that must be exceeded for instability,
results in no analysis analogous to the critical shear analysis found in Pedlosky (1982)
and Mooney & Swaters (1996).

We can easily determine the effect of the nonlinear terms by examining solutions
to (3.48) that are real and independent of X (see Pedlosky 1970 or Mooney &
Swaters 1996). If N > 0 the solution is a bounded periodic solution. The exact form
depends on ς, N and the initial conditions. One can provide a detailed analysis of the
characteristics of these solutions but these aspects are not the focus of this work (see
Reszka & Swaters 1999a; Karsten 1998; or Mooney & Swaters 1996). If we include
spatial variability, it can be shown that the stable, periodic solutions found when
N > 0 can be associated with travelling-wave and soliton solutions (see Karsten
1998). Thus, when the nonlinear effects are stabilizing, they act to reorganize the
wave-train into travelling-wave solutions that have an oscillating amplitude or into
soliton solutions of small but finite amplitude.

On the other hand, if nonlinear effects enhance the linear growth, that is, if N < 0,
the solution becomes infinite in finite time, i.e. explosive instability. This occurs for
all cases where the zonal wavelength of the perturbation exceeds the meridional
wavelength, that is, when k < `. The solutions grow initially due to the linear
instability and, as the amplitude becomes finite, nonlinear terms actually enhance
the growth. The growth continues to accelerate leading to the amplitude becoming
infinite in finite time.

This finite blow-up time can be calculated and is plotted in figure 1 versus the
ratio k/` for β = 1 and µ = 0.5. The blow-up time becomes large as k tends to `
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and zero. The time of blow-up is a minimum at an along-channel wavenumber just
slightly less than the cross-channel wavenumber, k ≈ 0.9`, where Tb = 8.4. For a
mid-latitude flow with a typical Rossby number of 0.1, this corresponds to roughly
one day. Thus, a marginally unstable wave will grow rapidly to full nonlinearity if its
zonal wavelength is greater than its meridional wavelength. This growth can occur at
all scales indicating that the ultraviolet catastrophe resulting from the linear analysis
will not be suppressed by nonlinear effects but only shifted to waves where the zonal
wavelength exceeds the meridional wavelength. In fact, the size of N, and thus the
growth rate, increases as the length scale decreases, indicating that the ultraviolet
catastrophe will be enhanced. Therefore, it is expected that any initial front will be
dominated by small-scale waves beyond the resolution of the model.

However, in § 5.3 we illustrate that if the nonlinear frontal terms are retained in the
baroclinic equation, small-scale instabilities are suppressed. In this case we see rapid
growth of large-scale waves with zonal wavelength slightly greater than meridional
wavelength. As the wave amplitude becomes large, here illustrated by the blow-up of
the amplitude, the wave will become fully nonlinear. In the fully nonlinear regime, it
is expected that nonlinear effects will eventually suppress the unstable growth leading
to stable, large-amplitude, large-scale structures (see § 5). This process differs from
the previous descriptions of eddy formation via finite-amplitude analysis. In previous
approaches, the nonlinear terms are shown to modulate the linear growth allowing
the formation of wave-packet/soliton structures that are theorized to represent eddies.
Here, however, the theory suggests that nonlinear effects can enhance the growth of
an unstable wave. Thus, a single unstable wave can grow to large amplitude resulting
in large meanders that may pinch off into eddies. This process is clearly illustrated in
the numerical solutions of § 5.

It should be noted that the nonlinear effects as described by N do not change
with β. Hence, varying the latitude of a flow (and the bottom topography as shown
in the Appendix) does not change the effect of the nonlinearities. This is not to say
that these have no effect, as the linear marginal stability curve and growth rate are
directly affected by changes in β, with higher β stabilizing the flow as expected. But,
the strength of the β-plane does not determine the scales at which the rapid nonlinear
growth occurs. Hence, one might expect to see the final scales of waves/eddies
resulting from baroclinic instability to be independent of the β-effect. This could help
explain why the cascade of energy to the Rhines scale seen in QG analysis can be
suppressed in the LAG formulation.

The above analysis leads to the question of how the nonlinear processes affect
linearly stable flows. The above analysis can be repeated for a marginally stable flow
equally well if we choose

α = αc − υs∆2, (3.49)

as opposed to (3.37). The analysis is identical to that presented above and leads to
(3.48) with υ = −υs. The only change is that the linear term in (3.48), which before was
dominated by the contribution of the linearly unstable growth rate σ, corresponds to
a linearly stable wave and is of the opposite sign. Thus, all solutions will be initially
stable and their amplitudes will oscillate. If one examines solutions to (3.48) when
ς < 0 and N > 0, nonlinear terms act to destabilize the linearly stable flow. But,
solutions which are unstable and become infinite in finite time are only possible if
A′0 ≡ AT (T = 0) takes a sufficiently large value (see Karsten 1998 for details). A
physical choice for A′0 would be setting it to zero to reflect the neutral growth of
amplitude associated with a linearly stable solution. Giving A′0 a large positive value
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corresponds to giving the initial solution a large kick of energy allowing its amplitude
to grow and may not be physical.

4. Thin-upper-layer model
In this section, we present an analysis of the thin-upper-layer model analogous

to that presented in § 3. Some of these results have been established before in
Swaters (1993b), Karsten & Swaters (1996b) and Reszka & Swaters (1999a). Thus,
our presentation here is brief.

4.1. Model equations

The thin-upper-layer model corresponds to a situation where the upper layer is much
thinner than the lower layer and we set

δ = ε2 and ν = 1.

The model equations (2.1) and (2.2) reduce to

∆ψt + J(ψ,∆ψ) + βψx + µJ(h, h∆h+ 1
2
|∇h|2) = 0, (4.1)

ht + J(ψ, h)− J(h, h∆h+ 1
2
|∇h|2) = 0. (4.2)

These are the weak-β thin-upper-layer LAG equations. It should be noted that the
length scale of this model is an intermediate scale lying between the deformation radii
associated with the upper and lower layers (Reszka & Swaters 1999a). This restricts
the flows which it can be applied to as this ‘intermediate region’ decreases in size as
the depth ratio increases.

The cubic nonlinear terms can be eliminated from (4.1) by forming (4.1) + µ× (4.2)
to give

(∆ψ + µh)t + J(ψ,∆ψ + µh+ βy) = 0. (4.3)

Due to the thinness of the upper layer the frontal terms are now only cubically
nonlinear and the weak coupling allows the frontal term to enter the leading-order
balance in the baroclinic equation.

4.2. Linear analysis

The linear stability analysis for the thin-upper-layer model was presented in Swaters
(1993b), where it was established that the steady solution (h0(y), ψ0(y)) is linearly
stable if

−(ψ′′′0 + β) > µh′0 > 0, ∀ y,
or

−(ψ′′′0 + β) < µh′0 < 0, ∀ y.
These conditions establish that the leading-order PV gradients in the two layers are
everywhere of the same sign.

In Reszka & Swaters (1999a), the solution to the linear stability problem for the
gently sloping front (3.13) was found with h̃ given by (3.17), the phase velocity given
by

c̃(k, `) =
−β̃ − α̃K4 ±√(β̃ + α̃K4)2 − 4α̃(µα̃+ β̃)K4

2K2
, (4.4)
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and the barotropic stream function given by

ψ̃ =

[
K2 +

c̃

α̃

]
h̃.

Eastward and westward flows no longer give identical results. The waves are
unstable whenever

(β̃ − α̃K4)2 − 4µα̃2K4 < 0,

which is not invariant under α→ −α. This gives rise to two marginal stability curves,

α̃c1
=

β̃

K2(K2 + 2
√
µ)
, (4.5)

α̃c2
=

β̃

K2(K2 − 2
√
µ)
, (4.6)

where the first curve corresponds to the lower branch and the second to the upper
branch of the marginal stability boundary given in Reszka & Swaters (1999a).

The inclusion of the nonlinear Jacobian terms in the baroclinic equation establishes
a high-wavenumber cutoff for instability. That is, instability occurs only for

−√µα̃+

√
µα̃+ β̃√

α̃
6 K2 6

√
µα̃+

√
µα̃+ β̃√
α̃

,

√−µα̃−√−µα̃+ β̃√−α̃ 6 K2 6

√−µα̃+

√
−µα̃+ β̃√−α̃ ,


(4.7)

for α̃ > 0 and α̃ < 0, respectively. Thus, the ultraviolet catastrophe seen for the
equal-layers model does not occur here. As µ becomes large, the high-wavenumber
cutoffs given in (4.7) both become large. In this limit the results tend to that of the
equal-layers model.

4.3. Nonlinear invariants and a stability theorem

The nonlinear invariants and aspects of the nonlinear stability theory were presented
in Swaters (1993b) and Karsten & Swaters (1996b). Here, without derivation, we
simply list the invariants. They are

E =
1

2

∫ ∫
Ω

|∇ψ|2 dx dy − 1

2

∫ ∫
F
h|∇h|2 dx dy, (4.8)

C =

∫ ∫
Ω

Φ1(∆ψ + µh+ βy) dx dy +

∫ ∫
F
Φ2(h) dx dy, (4.9)

M =

∫ ∫
Ω

y∆ψ dx dy, (4.10)

representing the Hamiltonian or pseudo-energy invariant, the Casimir associated
with the leading-order PV for the lower and upper layers and the zonal momentum
invariant, respectively.

Using (4.8) (see Swaters 1993b) or the zonal momentum invariant (4.10) (see
Karsten & Swaters 1996b) it is possible to establish linear and nonlinear stability
theorems. Here we present the conditions corresponding to those found using the
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zonal momentum invariant as they correspond to the linear conditions presented
above and are these easiest to interpret. The stability conditions are determined by
considering the pseudo-momentum

J(h̃+h0, ψ̃+ψ0) = M(h̃+h0, ψ̃+ψ0)−M(h0, ψ0)+C(h̃+h0, ψ̃+ψ0)−C(h0, ψ0), (4.11)

where (h0, ψ0) = (h0(y), ψ0(y)) represents a basic-state zonal flow, (h̃, ψ̃) is the pertur-
bation to this flow, and M and C are given by (4.10) and (4.9), respectively, with
the region of integration extended to the entire domain Ω. The following nonlinear
stability result was established by Karsten & Swaters (1996b).

Theorem 4.1. The zonal flow (h0(y), ψ0(y)) is nonlinearly stable in the sense of Lia-
punov with respect to the perturbation norm

||(h̃, ψ̃)||2 =

∫ ∫
Ω

(∆ψ̃ + h̃)2 + h̃2 dx dy,

if there exists real constants A1,2 and B1,2 such that either

0 < A1 6 Φ
′′
1(ξ) 6 B1 < ∞ and 0 < A2 6 Φ

′′
2(ξ) 6 B2 < ∞, (4.12)

or

−∞ < A1 6 Φ
′′
1(ξ) 6 B1 < 0 and −∞ < A2 6 Φ

′′
2(ξ) 6 B2 < 0 (4.13)

for all ξ ∈ R where

Φ′1(∆ψ0 + µh0 + βy) = −y, Φ′2(h0) = y. (4.14)

Equations (4.14) establish that the first variation of J vanishes when evaluated
at (h0(y), ψ0(y)). Conditions (4.12) and (4.13) establish that J is either positive or
negative definite, respectively, and Liapunov stability conditions follow accordingly.

The interpretation of these stability conditions is not trivial. Nonlinear stability can
only be established if linear stability holds, that is, if the PV gradients are everywhere
of the same sign. However, the nonlinear conditions are more strict than the linear
conditions in that (4.12) and (4.13) must hold for all values of ξ and not only when
evaluated for the basic state. As such, having the PV gradients everywhere of the
same sign does not guarantee nonlinear stability (see Karsten & Swaters 1996b for
more details and examples).

4.4. Finite-amplitude analysis

A weakly nonlinear analysis of the thin-upper-layer model analogous to that carried
out in § 3.4 is presented in detail in Reszka & Swaters (1999a). If one generalizes
these results by including the parameters µ and β, the analysis results in an evolution
equation identical to (3.48) where now

χ =
µkβ2[(1− µ)(K2 ±√µ)2 + 2(1 + µ)k2(K2 ±√µ)]

K4(K2 ± 2
√
µ)2[µ(1− µ)±√µK2]

, (4.15)

σ2 =
υk2β
√
µ

K2
, (4.16)

N = µk2`2

[
1 +

(K2 − 4`2)(K2 ±√µ)

µ(1− µ)±√µK2

]
, (4.17)
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where the upper + sign corresponds to the marginal stability curve (4.5) and the lower
− sign to (4.6). The term Γ has a very complicated form (see Reszka 1997). These
results extend the results of Reszka & Swaters (1999a) where it was assumed that
β̃ = −1 and µ = 1. It is clear that the nonlinear effects, the spatial variation, and the
dependence on the parameter µ are much more complicated in the thin-upper-layer
model than in the equal-layers model.

Solutions follow as in § 3.4 or Reszka & Swaters (1999a). There are again two basic
forms of solutions: periodic modulation of the linearly unstable mode when N > 0
and explosive nonlinear instability when N < 0. The behaviour of the solutions differs
for the two marginal stability curves. For the curve given by (4.5) and corresponding
to the upper sign in (4.15)–(4.17) the analysis is very similar to that for the equal-layers
model presented in § 3.4. As with the equal-layers model N > 0 when k > kc and
N < 0 when k < kc where now

k2
c = `2 −√µ+

√
4`4 + µ2. (4.18)

Here, kc is no longer simply ` but is generally larger than ` but less than
√

3`. Thus,
the range of wavenumbers that lead to nonlinear growth has been increased.

For the marginal stability curve given by (4.6) and corresponding to the lower sign
in (4.15)–(4.17) the story is different. Here, N > 0 when kc− < k < kc+ and N < 0
elsewhere with

k2
c± = `2 +

√
µ±√4`4 + µ2. (4.19)

Thus, the solutions grow nonlinearly for very large values of k and sometimes for
small values of k (k2

c− becomes negative for many parameter values and hence no
lower bound exists). Since the magnitude of N grows with k, and the nonlinear growth
increases with N, for this marginal stability curve the nonlinear growth rate is largest
for the smallest scale. This is a result akin to the ultraviolet catastrophe discussed
in § 3.2. However, as discussed in Reszka (1997), the parameter values at which this
growth occurs are not in line with the asymptotic approximations made for this
solution. That is, for typical parameter values µ = ` = 1 and taking k = kc+ = 2+

√
5,

we have from (4.6) that αc− ≈ β/17. But it was assumed α̃ and β̃ were of similar
size (see (3.13) and (3.14)). Thus, the analysis begins to break down while the linear
growth rate becomes extremely small. It should be noted that for parameter values
that give rise to αc− < 0, that is, the instability region given by the second equation
in (4.7), the nonlinear terms modulate the linear growth.

We conclude that the nonlinear terms in the thin-upper-layer model act to create
nonlinear growth for westward flows, α > 0, and zonal scales which are on the order
of or less than the meridional scales. At the small scales of the high-wavenumber
cutoff the analysis begins to break down. For eastward flows, α < 0, the nonlinear
terms are generally stabilizing.

5. Numerical solutions
In this section, the weak-β models are solved using a straightforward numerical

scheme. It is not our goal to provide an extensive investigation into all possible
parameter values and frontal geometries. Rather, we identify what we believe to be
the important aspects of the model, most notably how the analytical results of § 3 and
§ 4 manifest themselves in the fully nonlinear regime and how the nonlinear evolution
changes as the depth ratio varies.

The algorithm we use is straightforward: an explicit, finite-difference scheme that
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is leapfrog in time and central in space. The Jacobian terms are approximated using
the Arakawa (1966) scheme. The simulations are run in a zonally periodic channel
with no-normal-flow conditions at the channel walls. The algorithm is similar to that
used in Reszka & Swaters (1999a). The baroclinic equation is simply stepped forward
in time giving the frontal height. The barotropic equation is stepped forward in time
giving the barotropic relative vorticity. The stream function is then found using a
Laplacian inversion scheme. In the simulations, we employ two types of numerical
friction as discussed in Part 1. The first eliminates negative values of the frontal
height and the second is a high-power harmonic friction. Use of numerical friction
does result in a small increase in mass and affects the conservation of the model
invariants. As well, numerical friction dissipates the energy at very small scales.

5.1. Equal-layers model

For the equal-layers model discussed in § 3, the theoretical analysis predicts linear
instability and explosive nonlinear instability at small wavenumbers. For all numerical
simulations run, small-scale waves grow and continue to form even smaller-scale
structures until we have a turbulent current. No large-scale structures are seen and
the results are independent of the form of the initial perturbation, the inclusion of
friction, or the structure of the basic state. Obviously, the ultraviolet catastrophe
predicted by the linear and nonlinear analysis is being observed. Once again, this
illustrates that flows modelled by the equal-layers weak-β model are pushed to scales
beyond the resolution of the model. However, as we illustrate in § 5.3, if we include
the nonlinear frontal terms in the baroclinic equation, this small-scale growth can
be suppressed and large-scale features exhibiting characteristics consistent with the
analysis of § 3 are observed.

As the instability grows, there is a small release of mean potential energy (PE)
allowing a small growth of the perturbation amplitude. As expected, there is a large
growth in both the baroclinic KE and the barotropic KE as small scales begin to
dominate the flow. The fact that the baroclinic and barotropic KE grow concurrently
is required by the conservation of the pseudo-energy E.

5.2. Thin-upper-layer model

A detailed examination of numerical simulations using the thin-upper-layer model is
presented in Reszka & Swaters (1999a). Here, we briefly recap some of these results
while examining a simulation that allows direct comparison to the discussion that
follows. For isolated fronts, Reszka & Swaters (1999a) demonstrated that large-scale
waves can grow to finite size, often pinching off into warm core eddies or enclosing
cold core eddies. These large-scale waves can also be nonlinearly modulated with
amplitudes that oscillate in time. The conditions that separate these two forms of
solutions are not fully understood but there is no doubt that they are related to the
two forms of nonlinear effects seen in the finite-amplitude analysis. The development
of a barotropic Rossby wave in the lower layer is essential in the instability process.
It is the coupling of this wave to the baroclinic dynamics that initiates the instability
(Reszka & Swaters 1999a).

For our purpose we present an example simulation for an isolated front for
comparison to the simulations run for the equal-layers model. The results are shown
in figure 2. The figure shows the development of a large-scale wave and corresponding
barotropic cells. In this rapidly developing instability, the meanders develop large
filaments which pinch off to form eddies. These eddies are often reabsorbed by
adjacent filaments. In slower developing instabilities, the cyclonic barotropic cells
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Figure 2. Results of the numerical simulation of the thin-upper-layer simulation: (a) The contours
of the upper-layer height. The grey regions are where the upper layer vanishes; (b) and the contour
increment is 0.1. The contours of the barotropic stream function. The grey regions are where the
stream function is negative; and the contour increment is 0.04.

cause the waves to break backwards often enclosing cold-core eddies (see Reszka
& Swaters 1999a, b). The zonal and meridional length scales of these meanders
and eddies are always similar. As the instability grows, the current is concentrated,
resulting in high gradients and corresponding velocities. In terms of energy, there is
an initial release of mean KE as the large wave begins to grow. This initiates a release
of available PE and the instability grows rapidly with large increases in baroclinic
and barotropic KE. Again, this behaviour is predicted by the pseudo-energy E as it
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requires equivalent growth in baroclinic and barotropic KE. The PE is only released
when large-scale structures, which rapidly flatten out the mean front profile, have
formed.

In Reszka & Swaters (1999a, b) the thin-upper-layer model was used to examine a
current similar to the California Current System and the Gaspé current, respectively.
They showed that the length scales and growth rate of the baroclinic instability
predicted by this model were in agreement with studies using sophisticated primitive-
equation models and observations. Specifically, the model was able to capture the
filamentation and eddy formation associated with the front.

It should be noted that since the single-layer formulation of the weak-β model has
been illustrated to only allow for instability when the frontal profile is non-monotonic
(see Swaters 1993b and Part 1), these instabilities are necessarily baroclinic in nature.
Barotropic instabilities do exist as in Part 1. These instabilities are discussed in Reszka
& Swaters (1999a), where it was illustrated that the breakup of a coupled front into
a series of eddies is similar to that of the one-layer model (see Pavia 1992) and
compare well with the laboratory results of Griffiths et al. (1982). In contrast to
the barotropic eddies formed with the strong-β model in Part 1, the eddies do not
propagate westward emphasizing the weak effect of the β-plane.

5.3. General model

As discussed previously, the difficulty with the equal-layers model is that the instability
results in energy cascading to scales that are smaller than the model resolves. This
difficulty extends to all the asymptotic models, specifically the weak-β model discussed
in Benilov & Cushman-Roisin (1994), where the nonlinear frontal terms are not
included in the baroclinic equation. On the other hand, the thin-upper-layer model is
only strictly applicable in situations where δ ∼ ε2, requiring either a very thin front
or a large Rossby number. Most observed fronts tend to fall in between these two
limits (see Benilov & Reznik 1996) and therefore share characteristics of both these
models.

If we examine the general baroclinic equation (2.2), we see that the nonlinear frontal
term is O(ν) smaller than the time-derivative term and the barotropic–baroclinic
coupling term. But, with small scales these terms are important as the fourth-order
derivatives become large. If the Rossby number is not prohibitively small, the frontal
term will affect the evolution of the flow. We expect that this term inhibits unstable
growth at small scales since the thin-upper-layer model has a high-wavenumber cutoff
for instabilities.

In order to examine the effect of including the frontal terms in the baroclinic
equation, we run large-Rossby-number simulations, ε = 0.25, of the general weak-
β model, (2.1) and (2.2), while varying the depth ratio, 0.1 6 δ 6 1. Since the
Rossby number, ε, and hence ν, are no longer taken to be infinitesimal, the nonlinear
frontal terms are included in the baroclinic equation. Our goal is to demonstrate that
large-scale structures will develop with a thick upper layer if the smaller scales are
stabilized by the nonlinear frontal terms. As well, we can clearly illustrate the effect
of increasing the frontal depth on the length scales and growth rates of the baroclinic
waves.

In figure 3, we present the results of a simulation with δ = 0.25. As in the previous
section, waves of large length scale grow rapidly resulting in large meanders of a
concentrated current. These meanders tend to break backwards often entrapping
colder lower-layer water as a cold-core eddy or pinching off as a warm core eddy.
The waves are coupled with cyclonic and anticyclonic eddies in the barotropic flow,
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though the cyclonic motion dominates. As well, filaments of lighter fluid extend
outward from the front while intrusions of lower-layer fluid (seen as a vanishing of
upper-layer depth) reach across the front to the far channel wall. Once again, the
current is intensified even though the mean frontal gradient is reduced.

For westward flows, the front evolution shown in figure 3 was typical for all depth
ratios. In different simulations, with different initial perturbations, we see different
combinations of cold-core eddies, warm-core eddies and filaments. Three things are
always common: the front is always very unstable, the current is intensified and the
structures in the upper layer are always coupled to strong large-scale eddies in the
barotropic stream function. However, for larger depth ratios these structures tend to
be unstable and the fronts remain dynamic after eddies have formed. For smaller
depth ratios, the waves tend to be of larger scale, the eddies tend to be better defined,
and the small-scale noisiness is not a feature.

As before, we only see a release of available PE when the large-scale meanders
and eddies form. While the perturbation KE grows throughout the run, this growth
does not come at the expense of mean KE or PE. This form of instability, where
large growth in the wave energy occurs but apparently not at the expense of mean
energy, is discussed in relation to frontal disturbances in Barth (1989b). Once again,
this illustrates a difference between the LAG limit and the QG limit. In the QG
limit, instabilities grow as PE is transferred to KE. In the LAG limit, baroclinic and
barotropic kinetic energies must grow concurrently, as required by the conservation
of E, but are not directly tied to a release of PE.

In figure 4, we compare the dimensional wavelengths (a) and e-folding times (b)
of the most unstable waves for various depth ratios for westward flows. Surprisingly,
the wavelength varies little, remaining close to 125 km, decreasing slightly as the
depth ratio becomes very small. The dashed line plotted is the initial width of the
current and is effectively the meridional length scale of the baroclinic wave. The
most unstable wavelength is essentially greater than or equal to the current width
and the ratio of the zonal wavelength to the meridional length scale increases as
the depth ratio decreases. The e-folding time increases exponentially with decreasing
depth ratio. This indicates that the large store of energy in a deep front can feed a
rapidly growing instability. Barth (1994) has shown that increasing the depth ratio
and increasing the β-plane effect both lead to a shift toward a higher-growth-rate
smaller-scale instability.

These results are not symmetrical for eastward flows. As noted in § 4, eastward
flows may be either linearly or nonlinearly stabilized when the depth ratio is small.
When the simulations above were repeated for an eastward flow, this asymmetry
was apparent as the depth ratio decreased. For large depth ratios, δ > 0.35, the
evolution of the front was virtually identical to that for westward flows described
above. For 0.35 > δ > 0.1, baroclinic waves did grow, but at a much slower rate than
for the analogous westward flow. These waves reached a finite amplitude which was
then periodically modulated never producing the filamentation and eddies seen for
westward flows. For δ < 0.1, the fronts were stable to all perturbations.

It should be noted that these simulations reflect the results of the finite-amplitude
analysis of § 3.4 and § 4.4. There, it was found that nonlinear effects should result in
periodic modulation of linear growth when zonal scales are smaller that meridional
scales and explosive growth when zonal scales exceed or are similar to meridional
scales. In the simulations the vigorous instabilities and eddy formation can be con-
nected to explosive growth. If we examine figure 2 and figure 3, especially the
barotropic stream function plots, one concludes that for the large-growth instabilities
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Figure 3. Results of the numerical simulation of the general weak-β model with δ = ε = 0.25. (a)
The contours of the upper-layer height and (b) the contours of the barotropic stream function with
the contours as in figure 2.

zonal scales are equal to meridional scales. For eastward flows with small depth ratios
we see the nonlinear suppression of linear growth at all scales as predicted in § 4.4.
However, with the different geometry of the front, it is difficult to get a clear picture
of the nonlinear effects. Therefore, we ran a simulation with a sloping front extending
across a channel. In figure 5, we plot the amplitude of various zonal wavelengths
versus time. It is clear that the shorter wavelengths have their growth modulated, de-
veloping a quasi-periodic oscillation. On the other hand, longer wavelengths continue
to grow throughout the simulation. The growth rate does decrease after an initial
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Figure 4. The wavelength (a) and the e-folding time (b) of the most unstable mode versus the
depth ratio. The dashed line in (a) is the width of the current.

steepening. Thus, as we argued previously, the predicted explosive nonlinear growth is
modulated as the wave becomes fully nonlinear, allowing a relatively constant growth
rate.

6. Conclusions
We begin by briefly discussing the balances in baroclinic and barotropic equations

in the LAG models (see Part 1, for more details). If the β-effect is strong, the
barotropic equation is dominated by it and we have the strong-β models discussed in
Part 1. However, if this effect is smaller and balances the size of the relative vorticity
terms, the barotropic equation becomes a balance between the QG-like evolution
of the barotropic flow and the LAG evolution of the baroclinic flow. As the depth
ratio increases, the coupling between the two layers becomes more important and
dominates the frontal effects. In general, QG models are subject to instability which
strives to destroy baroclinic motions (Tang & Cushman-Roisin 1992) and gives rise
to large-scale baroclinic waves. Strongly coupled models are also unstable, with the
possibility of ultraviolet catastrophe (de Verdiérre 1986). This is reasonable because
increasing the depth ratio increases the vertical scale of the front and thus increases the
available energy stored in the front. On the other hand, frontal effects tend to steepen
the front favouring the formation of robust, coherent structures (see Cushman-Roisin
& Tang 1990 and Tang & Cushman-Roisin 1992) and can be classified as stabilizing.
In summary, we expect the weak-β models to be subject to instabilities which will
tend to smaller scales at large depth ratios and larger scales at smaller depth ratios.
Indeed, it is worthwhile emphasizing that the instability is dependent on the QG
instability in the barotropic equation. That is, if we consider the uncoupled limit, we
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find linear instability and results similar to that described in Part 1 (see Slomp &
Swaters 1997).

In this paper, we have set out to explore the highly nonlinear nature of these
balances. We have concluded that changing the depth ratio, and thus the coupling of
the two layers, does change the flow evolution. The equal-layers model is dominated
by its strongly coupled baroclinic equation. This leads to ultraviolet catastrophe,
large unstable growth at small scales. The balance of terms in the barotropic equation
does not suppress this growth because the barotropic relative vorticity terms and
the baroclinic LAG terms grow concurrently. Energy considerations do not rule out
this growth, as the pseudo-energy invariant E requires equivalent growth in both
the barotropic and baroclinic KE. The nonlinear stability analysis was unable to
establish stability conditions as it was not possible to bound growth at small scales.
Furthermore, the finite-amplitude instability analysis suggests that waves are subject
to an explosive instability when zonal scales exceed meridional scales. As expected, we
see the ultraviolet catastrophe in the numerical simulations, with instabilities growing
at the smallest scales possible. We conclude that the equal-layers model, which does
not include the baroclinic frontal terms at leading order, is unsuited for frontal
analysis.

As the depth ratio decreases, the baroclinic equation includes the frontal terms at
leading order. The QG–LAG balance in the barotropic equation allows the possibility
of instability at the large scales QG dynamics favours and now the baroclinic equation
also favours larger scales. This is seen in the linear analysis which predicts instability
for a finite band of wavenumbers. The finite-amplitude analysis suggests a suppression
instabilities at small zonal scales but explosive nonlinear instability at large zonal
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scales. We suggest that it is this explosive nonlinear growth that leads to the coherent
eddy formation seen in the numerical solutions of Reszka & Swaters (1999a) and § 5.
However, this unstable growth is only found for westward flows, and eastward flows
are, in general, much more stable. The similarity of analytical result for the equal-
layers and thin-upper-layer limits lead to the conclusion that the results discussed
previously in Swaters (1993b) and Reszka & Swaters (1999a) for the thin-upper-
layer model extend well beyond the restrictive depth-ratio scaling assumed in the
asymptotic derivation. Since the nonlinear growth of waves occurs in both models
but not in the QG limit, we conclude that it is the balance of the barotropic relative
vorticity advection and the nonlinear, baroclinic advection of momentum and mass
that allows such growth.

Numerical simulations of the general weak-β model illustrate that frontal terms
in the baroclinic equations can suppress small-scale growth for all depth ratios. The
result is a concentrated current which develops large-scale structures within a highly
unstable front. These large-scale structures were able to release mean PE from the
front. The length scale of these structures is relatively constant for all depth ratios,
though the growth rate decreases rapidly as the depth ratio decreases. The asymmetry
between eastward and westward flows is enhanced as the depth ratio decreases as
the β-plane stabilizes thin eastward currents. The vigorously growing instabilities of
the isolated front are indicative of the rapidly growing meanders, eddies and squirts
common to coastal currents (Paldor & Ghil 1991) and are similar to those shown in
the primitive-equation models of Haidvogel et al. (1991), Spall (1995), Barth (1994)
and Bush et al. (1996) and the multi-mode, continuously-stratified QG models of Flierl
et al. (1987) and Feliks & Ghil (1996). These similarities lead us to the conclusion
that despite their simplicity, the two-layer LAG models are capturing the essential
physical process involved in frontal instability: the balance of baroclinically unstable
QG evolution of the barotropic flow with the highly nonlinear frontal effects which
favour large scales.

The analysis of different depth ratios allow us to draw important conclusions about
frontal instability. If frontal effects are important, as in the thin-upper-layer model,
we see stable anticyclonic eddies form. However, if baroclinic instability dominates
frontal effects, as in the equal-layers model, we see the destruction of large-scale
features by small-scale instability. The numerical simulations illustrated that if the
frontal effects are included in the leading-order dynamics, that is, in the baroclinic
equation, they can suppress baroclinic instability at small scales for all depth ratios.
As well, we have illustrated that the growth rate of instabilities increases as the depth
ratio increases. This favours the growth of anticyclonic eddies as they are regions of
local increases in the frontal depth. Together these two features explain why in the
LAG regime the geostrophic-turbulence cascade to larger scales is arrested and the
final state dominated by stable, anticyclonic eddies with length scales several times
the deformation (Tang & Cushman-Roisin 1992).

It is also interesting to compare the results of the two-layer LAG models to the
analysis of the Swaters (1991) model (see the Appendix for the model equations).
As shown in Karsten & Swaters (1999), the Swaters (1991) model is derived in the
LAG limit when considering bottom-trapped flow over topography. Despite being
derived in the large-amplitude limit, the nonlinear frontal terms seen in the other LAG
models do not appear in the leading-order equations (they are small compared to the
strong effect of topography on the baroclinic flow). Due to its simplicity, the Swaters
(1991) model allows a richer variety of theoretical analyses (see Swaters 1991, 1993a;
Mooney & Swaters 1996; Poulin & Swaters 1999a–c; Karsten, Swaters & Thompson
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1995; Karsten & Swaters 1996a; and Swaters 1998a, b). Similarly, the equal-layers
and thin-upper-layer models also have corresponding forms for such flows provided
the topography is scaled appropriately. The analysis presented here changes very little
when bottom topography is included (or even replaces the β-plane) with the results
qualitatively the same (see the Appendix).

A couple of important differences arise between the results of the Swaters (1991)
model and the models discussed here. The predominant difference is that the strong
bottom topography in the Swaters (1991, 1993a) model allows a release of PE that
drives the instability (see the discussion in Swaters 1993b). Thus, the instability is
asymmetric and is seen as a slumping of fluid down the sloping bottom. The fact
that the barotropic motion is primarily QG-like means that this instability occurs
for a finite band of length scales and we do not see the ultraviolet catastrophe of
the equal-layers model. The finite-amplitude analysis of the Swaters (1991) model
illustrates that nonlinear terms suppress the linear growth (Mooney & Swaters 1996)
at all scales. This effect can be clearly seen in the numerical simulations of a cou-
pled front in Swaters (1998a) where linear instabilities grow to form filaments that
then roll up into eddy-like structures. This instability is fundamentally different
from the instability seen in the two-layer LAG models examined here. The insta-
bility that develops in the two-layer LAG models examined here is symmetric as
PE is not released by simple movement of fluid down a sloping bottom. PE can
be released, but this requires the formation of large-scale structures involving a
large growth in the KE and a steepening of the front. Eddies form not as a re-
sult of a roll-up of filaments but as the growth and pinch off of a single wave.
This eddy formation is present in both coupled and isolated fronts for the thin-
upper-layer and equal-layers models (Reszka & Swaters 1999 and Karsten 1998).
Again this emphasizes that it is the explosive nonlinear growth, predicted in the
finite-amplitude analysis for the weak-β models, that leads to the coherent eddy
formation seen in the numerical solutions of Reszka & Swaters (1999a) and this
paper.

Reszka & Swaters (1999a, b) included a detailed comparison of their thin-upper-
layer analysis to the Californian Current and the Gaspé Current, respectively. The
model qualitatively captured the explosive instability of the Californian Current and
the modulated instability of the Gaspé Current, illustrating the varying effects of
bottom topography. Quantitatively, the model did remarkably well in predicting
length scales and growth rates of the instabilities. However, it could be argued that
they had pushed the thin-upper-layer model beyond its strict regime of applicability
by examining fronts with relatively large depth ratios. Our analysis indicates that
their results can be extended to large depth ratios with little change qualitatively
and only an increase in the growth rate, quantitatively. This suggests that detailed
comparison and analysis of a wide variety of fronts and currents could be carried
out.

Although we have attempted to examine a number of the aspects of the nonlinear
dynamics of weak-β LAG models, there still remain many open areas of research.
Further examination of the linear weak-β models using numerical techniques could
provide a more accurate picture of the form of the instability that develops on coupled
and isolated fronts. Another obvious extension of this work is the examination of
several-layer models and a examination of the general geostrophic equations that
contain both the LAG and QG limits (see Cushman-Roisin & Tang 1990; Cushman-
Roisin et al. 1992; and Benilov & Reznik 1996).

Another area of interest is that of eddy development and pinch off. As we have
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shown, eddy pinch off occurs from the growth of a single wave, which the meanders
to pinch itself off, without friction. This should be compared to the numerical results
of Feliks & Ghil (1996). They demonstrated that a continuously stratified QG model
could be used to examine the process of eddy pinch off if sufficient vertical modes
were included; at least three vertical modes were required to model eddy detachment
of a narrow swift current, two modes for a wide slow current. Once again, they
note the unrealistic symmetry of cyclonic and anticyclonic eddies obtained with QG
models. LAG models, by allowing large isopycnal deflections effectively break this
symmetry. Our analysis indicates that the two-layer LAG model can model the eddy
pinch off process, but it would require the extension to a continuously stratified LAG
model to directly compare results.

Finally, LAG models could be used to estimate the mixing and transport that
occurs as a front destabilizes leading to improved eddy parametrization schemes.
In Greatbatch (1998), it is proposed that the parametrization of the eddy flux of
PV be derived from a PV equation averaged over the thickness between isopycnals.
The LAG models studied here allow the simple two-layer analogue of this equation
to be studied both analytically and numerically. As well, the LAG models allow
measurements of the inertial terms associated with the frontal effects not present
in analysis based on a QG assumption. Alternatively, knowledge of two-layer LAG
models could be used to include schemes to resolve the necessary scales needed to
model frontal instabilities with limited vertical resolution. Further work continues in
these areas, and the results will doubtlessly prove very interesting.

Appendix. Adding bottom topography
In this Appendix, we briefly present the changes to the models and analyses if

bottom topography is included. The details of two-layer LAG model derivation
including bottom topography are given in Karsten & Swaters (1999). Here we simply
present the resulting equations with the appropriately scaled bottom topography
hB(x, y).

For the equal-layers model, we scale the bottom topography similarly to the β-plane
effect and the model equations become

∆ψt + J(ψ,∆ψ) + βψx − J
(
hB, ψ − µ

2
h2
)

+ µJ[h, h(1− µh)∆h+ 1
2
(1− 2µh)|∇h|2] = 0,

ht + J(ψ, h) = 0,

respectively. As one might expect when the layer depths are equal and the scale
amplitude of the bottom topography relatively small, the contribution from the
bottom topography only appears in the barotropic equation.

In order to compare the effects of bottom topography to β-plane effects we consider
linearly sloping topography hB(y) = sy, where s is the slope of the topography, giving

−J
(
hB, ψ − µ

2
h2
)

= s(ψx − µhhx).
The first term on the right-hand-side of this equation is identical to the β-plane effect
on the barotropic stream function. The second term results from the fact that the
two layers do not feel the bottom topography equally. The changes in the analysis
are all a result of this second term and are minor. One thing to note is that the
transformation (3.4) can no longer be used to simplify the equations.
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If we consider the linear analysis of the gently sloping front with the bottom
topography appropriately scaled s = ∆s̃, the dispersion relationship becomes

c̃(k, `) =
−(β̃ + s̃)±√(β̃ + s̃)2 − 4µK2[(1− µ)α̃2K2 − α̃s̃]

2K2
.

Fronts remain unstable to small-scale perturbations and bottom topography stabilizes
the front as it becomes large. The final term in the square root indicates that bottom
topography has a greater stabilizing influence when the frontal slope and the bottom
slope have the same sign. Thus the symmetry of eastward and westward flows has
been broken by the topography.

The effect on the nonlinear analysis is minimal. The change in the dispersion
relation shifts the marginal stability curves, but this has only a quantitative effect on
the final results. The additional term in the equations only affects the spatial variation
term in the envelope equation and thus has no effect on nonlinear unstable growth.

For the thin-upper-layer model the effect of bottom topography is again similar
to the β-plane effect. There is an additional change as the inclusion of bottom
topography breaks the vertical symmetry of the model geometry. While this does not
affect the analysis when the two layers are scaled equally, it does when one layer is
thinner than the other (see Karsten & Swaters 1999). If we assume the upper layer is
thin, as was done in the body of the paper, the model equations reduce to

∆ψt + J(ψ,∆ψ) + βψx + µJ(h, h∆h+ 1
2
|∇h|2)− J(hB, ψ) = 0,

ht + J(ψ, h)− J(h, h∆h+ 1
2
|∇h|2) = 0.

In the case of linear bottom topography, −J(hB, ψ) = sψx, and the effect of bottom
topography is identical to the β-plane effect (hence the analysis of Reszka & Swaters
(1999a) can be applied equally well to a β-plane as discussed in the body of this
paper). It should be noted that steep nonlinear bottom topography can destabilize
a current if it slopes in the opposite direction to the front (see Reszka & Swaters
1999b).

An analogous model can be derived when the lower layer is thinner. The bottom
topography must be very weak as strong bottom topography can dominate the flow
in a thin lower layer and result in different dynamics (see below). The model becomes

∆ψt + J(ψ,∆ψ) + βψx + µJ(h, h∆h+ 1
2
|∇h|2)− J(hB, h) = 0,

ht + J(ψ, h)− J(h, h∆h+ 1
2
|∇h|2) +

1

µ
J(hB, h) = 0,

where h is now the depth of the lower layer. The bottom topography directly affects the
baroclinic flow of the lower layer. The effect of the topography is no longer equivalent
to the β-plane effect. The analysis of the model does not differ greatly. Topography
stabilizes when it slopes in the same direction as the front but can destabilize the flow
if it slopes in the opposite direction. The topography does not affect the nonlinear
analysis as it enters the equations only through linear terms. As such, the results of
this paper can be extended to the modelling of thin bottom-trapped currents over
very weak bottom topography.

The study of thin-lower-layer flows over weak bottom topography leads to a
comparison of the models discussed here to the model of Swaters (1991). As discussed
in Karsten & Swaters (1999), this model is also a two-layer LAG model in that large
isopycnal deflections are allowed. However, the effects of the bottom topography
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are scaled equivalently to the baroclinic flow. This allows the bottom topography to
strongly influence the baroclinic flow to the extent that the nonlinear frontal terms
do not enter the model equations. An appropriately scaled β-plane can be included
in the model giving the model equations

∆ψt + J(ψ,∆ψ) + βψx − J(hB, ψ + h) = 0,

µht + µJ(ψ, h) + J(hB, h) = 0.

Analysis of this model (with β = 0) can be found in Swaters (1991, 1993a, 1998a, b),
Karsten & Swaters (1996a), Karsten et al. (1995), and Mooney & Swaters (1996).

A final note on bottom topography. The above models have been presented with
both bottom topography and β-effects but are equally valid on smaller scales where
β-effects are small (the model equations are simply the above equations with β = 0).
If the β-effect is not being included in the model, the coordinate system no longer
has a fixed direction. As such, the models can be used to examine coastal fronts and
bottom-trapped currents following continental shelves.
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